Dispersion Variations: Impact and Analysis R. N. Manchester CSIRO Astronomy and Space Science Sydney Australia

Dispersion Variations

- Variations first detected in Crab and Vela pulsars
 - Rankin & Counselman (1973)
 - ➢ Hamilton, Hall & Costa (1985)

For Vela, rate ~ 0.04 cm⁻³ pc yr⁻¹

- Uncorrected DM variations add noise to timing data
- Spectrum is red but often contains significant power at frequencies $\sim 1 \ yr^{-1}$
- Uncorrected DM variations will bias fitted pulsar parameters, e.g. parallax
- Will also contribute power to unmodelled signals, e.g. from gravitational waves

DM Correction

• Observed ToAs are sum of frequency-independent "common-mode" terms t_{CM} (e.g., clock errors, GW, etc) and interstellar delays t_{DM} – assume ~ λ^2

$$t_{\rm OBS} = t_{\rm CM} + t_{\rm DM} (\lambda/\lambda_{\rm REF})^2$$

- The interstellar term $t_{\rm DM}$ is noise want to minimise it
 - > Observe at ~zero wavelength, i.e., X-ray or γ -ray
 - Solution Observe at two or more wavelengths, λ_1 and λ_2 (with $\lambda_1 > \lambda_2$)
- Can then solve for $t_{\rm DM}$ and $t_{\rm CM}$:

$$\tilde{t}_{\rm DM} = (t_{\rm OBS,1} - t_{\rm OBS,2})\lambda_{\rm REF}^2 / (\lambda_1^2 - \lambda_2^2),$$

$$\tilde{t}_{\mathrm{CM}} = (t_{\mathrm{OBS},2}\lambda_1^2 - t_{\mathrm{OBS},1}\lambda_2^2)/(\lambda_1^2 - \lambda_2^2).$$

- $t_{\rm DM}$ is proportional to the DM variation
- $t_{\rm CM}$ is what we really want!
- We need to minimise the uncertainty in t_{CM} :

$$\sigma_{t_{\text{CM}}} = \left[\sigma_{t_{\text{OBS},2}}^2 + \left(\frac{\lambda_2^2}{\lambda_1^2}\sigma_{t_{\text{OBS},1}}\right)^2\right]^{1/2} \left(\frac{\lambda_1^2}{\lambda_1^2 - \lambda_2^2}\right)$$

i.e., need $\lambda_2 \ll \lambda_1$ and small σ_t

- note that σ_{t1} can be larger than σ_{t2} by a factor $\sim (\lambda_1/\lambda_2)^2$
- Sum of DM corrections is constrained to zero
- Also, need to ensure that t_{CM} is not covariant with timing model terms, e.g., v, \dot{v} , etc.

DM Variations - PSR J1909-3744 NANOGrav

- GBT: 820 and 1400 MHz
- ΔDM from dual-band observations within 15-day span (Demorest et al. 2013)

Effect of CM Term

- If CM term not included in fit, power is extracted from freq-independent variations and coupled into DM variations
- With CM term included, all freq-independent power (e.g., GW signal, clock errors) is contained in CM values

PPTA Three-Band Timing Residuals

(Manchester et al. 2013)

DM Variations for PPTA pulsars

DM Smoothing

- For PPTA, data are better sampled obs every 2-3 weeks
- Benefit in averaging multi-band data over a longer span reduces effective σ_t
- Uniform sampling at T_s with linear interpolation
- $T_s = 1/f_c$, where f_c is frequency where DM-fluctuation and white-noise powers are equal
- Little effect of sensitivity of GW detection since expected $A_{GW}^2 \sim f^{-13/3}$ steeper than spectrum of DM fluctuations
- Improves precision of model terms with spectral power at $f \sim f_c$, e.g., parallax

Effect of DM Corrections: PPTA Psrs

- Nine psrs where DM correction clearly beneficial
- For six more, some benefit
- For others, added noise outweighs benefit or non-v² variations

PSR	$\frac{ \Delta \nu }{\sigma_{\nu}}$	$\frac{ \Delta \dot{\nu} }{\sigma_{\dot{\nu}}}$	$rac{\Sigma_{ m post}}{\Sigma_{ m pre}}$	$rac{ar{P}_{ m post}}{ar{P}_{ m pre}}$	Imp.
J0437-4715	92	48	0.6	0.15-0.25	Y
J0613 - 0200	0.16	2.9	1.1	0.3 - 1.2	У
J0711 - 6830	3.9	5.5	1.0	0.4 - 1.6	У
J1022 + 1001	1.4	0.3	1.0	0.6 - 2.6	n
J1024 - 0719	1	0.91	1.0	0.2 - 0.7	Y
J1045 - 4509	28	11	0.7	0.22 - 0.39	Y
J1600 - 3053	35	0.51	1.0	0.4 - 0.8	Y
J1603 - 7202	2.4	2.5	1.0	0.2 - 0.9	Y
J1643 - 1224	11	0.73	1.7	1.3 - 3.1	Ν
J1713 + 0747	3.2	6.2	1.0	0.2 - 0.7	Y
J1730 - 2304	6.5	1.8	1.1	0.9 - 3.2	n
J1732 - 5049	2.6	2.8	1.0	0.4 - 1.4	У
J1744 - 1134	5.4	0.48	1.0	0.5 - 2.0	n
J1824 - 2452A	24	31	0.7	0.29 - 0.56	Y
J1857 + 0943	4.3	1	1.0	0.2 - 1.0	У
J1909 - 3744	28	5	1.0	0.44-0.79	Y
J1939 + 2134	13	1.7	0.7	0.34 - 0.67	Y
J2124 - 3358	0.25	0.056	1.0	0.5 - 1.9	У
J2129 - 5721	3	2.1	1.1	0.7 - 2.8	n
J2145 - 0750	0.22	0.18	1.0	0.2-1.0	У

Scattering and non-v² Delays

- \bullet Scattering delays scale roughly as λ^4
- If not separately solved for, will bias DM corrections and contribute excess noise to high-frequency ToAs
- Observed in PSR J1939+2134 and J1643-1224
- For J1643-1224, DM correction increases the white timing noise at 20cm by more than a factor of three
- Will limit use of very low frequencies for DM correction unless scattering delay is separately measured

 $13 \ \mu s \int \frac{1}{2} \left[\frac{1}{2} \left$

Summary

- DM variations are a major contributor to timing noise for MSPs at GHz frequencies
- Best solution is to avoid them by timing X-ray, γ -ray, or at least relatively high radio frequencies >~ 3 GHz
- Observations at frequencies <~ 2 GHz must be corrected using observations at lower frequencies
- Frequencies <~ 400 MHz problematic for all but low-DM pulsars because scattering delays are starting to dominate
- With current systems, timing precision is generally limited by precision and accuracy of DM corrections – main motivation for development of ultra-wide-band receivers