Magnetospheric structure in the double pulsar

Maxim Lyutikov (Purdue U., CITA)

in collaboration with David Lomiashvili (Purdue) Kostas Gourgoliatos (Purdue->McGill) Eric Clausen Brown (Purdue->Bonn) Maura McLauphlin, Ben Perara (WVU)

"A" eclipse: modulated at B rotation

- Modulation is at $0.5P_{\rm B}$, $P_{\rm B}$ and full eclipse after the conjunction
- Absorption when magnetic axis of B is pointing towards us

0.5

Model of eclipses

Wednesday, January 23, 2013

Geometrical parameters determined to < 0.1 degree

- Breton et al, Science 2009
- $\theta_\Omega \sim 51.02^\circ$ (angle between orbital plane normal and $\Omega)$ expected due to kick at birth of B
- ϕ_{Ω} (angle between plane of sky and Ω)- changes, see later
- $\chi{\sim}70.92^{\circ}$ degrees (angle between μ and $\Omega)$ close to orthogonal rotator
- High density of plasma on closed field lines, ~ 10⁵ higher than expected
- Eclipsing plasma ~ 3 times smaller that the magnetopause

Change of eclipse profile due to geodetic precession: new GR test

- Strong gravity at the source, 5 independent tests
- GR in strong regime is satisfied in the most complete test, in some parameters to 10⁻⁴
- Any competing theory of gravity should reproduce first PPN corrections (at least on ~ au scales)

Testing SN explosions mechanisms

Farr+, 2011

- SN explosion can "kick" and "tumble" pulsar B.
- No precession of A: spin still aligned with orbital
- The kick was in the orbital plane

 Highly tumbled post-kick pulsar B: effective kick was highly off-centered

Determining emission hight and shape

• Combine

- orbital variations
- changing profiles
- sub-pulse drift

to determine shape and location of the emission region

Orbital variations

- Pulsar B is seen only at some parts of the orbit
- At different orbital phases magnetosphere of B has different distortions: this should show up in emission properties of B.
- By studying these variation we can infer the structure of the magnetosphere and location of emission region

3D view of distorted magnetosphere

Use Solar physics models 3D view of the distorted of wind-Earth magnetosphere ^{magnetosphere}. Lomiashvili, in prep interaction (Tsyganenko)

Inverse problem: find location and shape of the emission region to match orbital variations

3D view of distorted magnetosphere

Use Solar physics models of wind-Earth magnetosphere interaction (Tsyganenko) A's wind

Inverse problem: find location and shape of the emission region to match orbital variations

Orbital variations in B emission

Perera+, 2010

Orbital variations in B emission

Orbital variations in B emission

in order to simulate the disappearance of pulsar B an additional "cutoff" is required *Cutoff*: If $\Omega \cdot B < 0$ then *Flux* $\rightarrow 0$

Induced charge changes the sign across the null surface. Change in the acceleration regime?

Geodetic precession: stereoscopic view of the emission region

Due to geodetic precession, we get a stereoscopic view of pulsar B magnetosphere exceptional possibility to study details of pulsar radio emission.

Horse-shoe emission region different cuts through emission zone

Location of radio emission generation

Lomiashvili, in prep

Combine the two models (orbital and secular variation)

 Magnetosphere of B is "shaking" with the period of A: reconnection between B-field in the wind and the magnetosphere: a probe of the NS wind very close in: striped wind

Earth-like models of magnetosphere-wind interaction (Dungey)

Earth-like models of magnetosphere-wind interaction (Dungey)

Wednesday, January 23, 2013

And back to General Relativity

- Rotation of pulsar B is very noisy the main error in the GR tests.
- Understanding the plasma dynamics will lead to improvements of the GR tests

Conclusion

- We can reproduce:
 - Bright Phases,
 - Pulse profile evolution
 - Drifting subpulses
- Location and shape of the radio emission region:
 ~ 2700 R_{NS} , horse-shoe
- Horse-shoe, radio follows the current?
- Large smission hights: anamalous cyclotron model (Kazbegi + 91, Lyutikov+1999) predict high emission radii

Origin of particles in pulsar B magnetosphere: van Allen radiation belts

- Radial diffusion in co-rotating magnetosphere - testing density distribution
- Testing scaling relations (geometry) over a much wider parameter range than that provided by Solar planets alone. (~ Jupiter turns into Neptune every half period).

